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The electronic structure of random copolymers (RCP) is theoretically investigated by the 
single-site coherent potential approximation. The results are also compared with those by the 
band calculation for the corresponding ordered system. In the Al-xBx binary RCP, a strong 
reduction in the system band gap (Eg(Al_xB~)) is found in the dilute B region when the system 
has the relation of Eg(A) > Eg(B). This dependence is caused by the asymmetric quenching in 
the density-of-states (DOS) singularity at the band-edge states. The gap-opening mechanism 
and the asymmetric quenching are discussed by focusing on the role of the spatial dimension on 
the electronic structure of the random system, and the theoretical treatment is finally applied 
to the calculation of the joint DOS for the Si-Ge RCP system. 

1. I n t r o d u c t i o n  

Although copolymers are the fundamental  form of polymers, their electronic 
structures are not yet fully understood. This is because normal copolymers do not  
have the ordered arrangement of the component  elements (ordered copolymer, 
OCP), but have the disordered arrangement (random copolymer, RCP). Pioneer- 
ing theoretical considerations on this aperiodicity in the RCP systems have been 
extensively carried out by Ladik's group and Del Re's group. Ladik and Seel [1] 
first discussed the self-consistent field (SCF) treatment of  a periodic polymer con- 
taining a cluster of  impurities, and constructed the disordered chain's Fock matrix 
from the Fock matrices of the periodic systems by introducing the chemical build- 
ing block technique (CBBT) [2]. They calculated the density-of-state (DOS) energy 
profile of large finite polymers by employing algorithms like the negative factor 
counting (NFC) method of Dean [3]. They applied their treatment to investigate 
the electronic structures of biopolymers [4]. Ladik also developed the application 
of the Green function approach to this field [5]. With Del Re, he gave the general 
analysis of the local impurity SCF approach [6] and applied it to quasi-one-dimen- 
sional systems [7]. 

The characteristic features of  the electronic properties in the low dimensional 
systems including polymers and copolymers originate from the DOS singularity at 
the band-edges. The purpose of the present work is to investigate the electronic 
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characteristics in the RCP systems, focusing on how the randomness in the RCP 
causes the DOS singularity to vary, compared with that of the OCP system. For 
this purpose, the coherent potential approximation (CPA) method [8-10] is 
employed. The reasons are that the disordering in the RCP system is (and/or can be 
reduced to be) the typical site-substitutional randomness in the backbone atoms 
and that the CPA method revealed the electronic characteristics due to this type of 
randomness [10]. Moreover, the CPA method is not limited to the finite systems 
but applicable to the infinite system, and is independent to the numbers of the com- 
ponents. Therefore, with the help of the CPA method, it is possible to systemati- 
cally investigate the electronic structure of the "huge and/or  infinite" RCP as well 
as the finit RCP. 

In section 2, we describe the application of the CPA method to the RCP sys- 
tems, and reform the coupled linear-complex equations for the multi-component 
RCP system. The results for the binary RCP are discussed in section 3.1. The inves- 
tigation is further extended to the multi-component (ternary and quaternary) 
RCP systems in section 3.2 and also to the actual system of the Si-Ge RCP in 
section 3.3. 

2. Theoretical  calculation 

2.1. DOS F O R  T H E  R A N D O M  SYSTEM 

The DOS N(E) is given by 

N(E) = _ 1  lim Im{Tr[G(E + bT)]}, (1) 
r/---~ 0 

where the Green function G of the system is known. For random systems, how- 
ever, the system's Hamiltonian, i.e., the system's Green function, is not uniquely 
defined. In this case, the DOS (Nrdm(E)) can be expressed by ensemble-averaging 
of the DOS for the individual random configuration sets. Since this ensemble- 
averaging and the tracing of the Green function matrix are exchangeable for the 
system involving many ensembles, the AV ~m (E) can be expressed as 

Nrdm(E) = (N(E)) = __1 lim Im(Tr[(G(E + it/))]) , (2) 
7~ B--~0 

and is determined by calculating the trace of the ensemble averaged Green 
function (G). 

The ensemble averaged Green function ((G)) is defined by the effective Hamil- 
tonian Heft, as 

( c )  = ( Z l  - (3) 
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where the effective Hamiltonian Herr is expressed in terms of the site-expression 
form, 

H~ff = y ~  Ii)~(il + ~ l i ) v i j ( j l ,  (4) 

where a is the coherent potential energy for the random system and vt/is the trans- 
fer energy from the ith site to the j th  site. The sum should be carried out over the 
all sites. 

We, now, introduce the function F0 (Z) by using the following equation: 

1 1 
F o ( Z )  = - ~  ~ Z - e~ (5) 

The trace of the ensemble averaged Green function, Tr[(G)], can be obtained by 
multiplying the system's total site number N by F0 as follows: 

Tr[(a)]  = N F o ( E  - a )  . (6) 

This is because the trace (Tr[(G)]) is given in terms of the site (~) expression as 

1 
Tr[(G)] = Z <~l<a>l~> -- ~ E -  ° - (7) 

Thus, instead of calculating Tr[(G)] directly, we can obtain the DOS for the 
random system by calculating the imaginary part ofF0. 

2.2. CALCULATION OF Fo F U N C T I O N  

Here, we limit the random copolymer (RCP) to a system, whose backbone 
atoms are randomly substituted with several atoms [11]. In this system, it is possi- 
ble to determine the DOS energy profile for each homopolymer because each 
homopolymer has an ordered arrangement of the component substance. Let us 
consider how the function F0 can be expressed for the RCP in terms of the DOS 
(No) for each homopolymer. 

Since the DOS for the pure substrate (No) is defined as 

No(e) = Z 6(c - ek), (8) 
k 

the function Fo (E - a) can be obtained by using this No, 

1 L °° No(E) de. 
Fo ( E - cr ) = -N _ _  oo ( E - -  --~) - -  , (9) 

In the 1D ordered homopolymer system, the singularity in the DOS energy 
profile at the band-edges is most characteristic. The present aim is to investigate the 
characteristic features of the electronic structure for the RCP systems, focusing 
on how the DOS singularities are influenced by the randomness. The aim can be 
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fully discussed, by using the free electron approach with the effective mass approx- 
imation. The DOS of the 1D homopolymer (No m) is then given by the following 
equation: 

N~D (E) = (10) 
N 
-4 l x / I ~ + E ( 0 < E < I )  , 

where E is the reduced energy in units of half-bandwidth energy. Substituting eq. 
(10) for No in eq. (9), the F0 function for the RCP having the coherent potential cr 
can be analytically expressed as follows: 

[2 tan-1 x/E l c r  In 1 - x / E - o r +  1 
1 - 1  1 + x / E - o r +  1 i 

F ~ ° ( E -  or) = ~1 ~-E---~r- 1 - x / E - a +  1 x / E - a +  1 

(11) 

It is also important to compare the results for the 1D RCP with the results for 
the 2D and 3D random alloy systems, because the singularity in the DOS energy 
profile strongly depends on the spatial dimension. Since another purpose of this 
paper is to consider the role of the spatial dimension in the electronic structure of 
the random systems, similar investigations were carried out for the 2D and 3D 
random systems. 

The DOS of the ordered pure 2D and 3D substances (N~, i = 2D and 3D) are 
given by 

N ( - I < E < I ) ,  (12) N~D (E)=-~-  

N03D (E) = 2Nx/1 - E2(-1 < E <  1). 

The corresponding Fo functions are then given by 

1 E - a + I  F~D(E 0")  lnE o -  1 ' 

(13) 

(14) 

f 3D(E-  cr) = 2 ( E -  o'-  ~ ( E -  cr)2 - 1 )  . (15) 

2.3. S-CPA CONDITION 

The remaining problem is to determine the coherent potential energy cr of the 
RCP. Since we focus on the site-substitutional randomness, the coherent potential 
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energy is obtained by the CPA condition. For simplicity, we consider here the 
single-site coherent potential approach (S-CPA) [10], whose condition for the 
multi-component system involving n elements is 

C i - -  O" 

~_, Ci 1 - (e,.-S~-)F0(E - or) = 0, (16) 

where the symbols Ci and ei are the content ratio and the on-site energy of the ith 
element (see appendix). 

Since the F0 function is given as a functional form of cr, both cr and F0 should be 
determined self-consistently by coupling the S-CPA condition (eq. (16)) and the 
function F0 (eqs. (11), (14) or (15)). We solve these values numerically by Muller's 
method for the complex non-linear coupled equations [12]. 

3. Results  and discussion 

3.1. BINARY RCP SYSTEM 

Figure 1 shows the DOS energy profile of the 1D binary RCP. On-site energies 
used in the calculation are EA = --1 and EB = 1 in units of half-bandwidth energy, 
and the composition ratio is CA = Ca = 0.5. The characteristic features are an 
energy-gap opening at the center of energy (E ~ 0) and also a strong quenching of 
the DOS singularity at these gap-edge states. 
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Fig. 1. DOS energy profiles for A0.sB0.5 binary RCP. On-site energies of elements A and B are 
EA = --1 and EB = 1 (energy unit is half-bandwidth). The results for 2D and 3D random systems are 

also shown. 
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First, let us investigate the gap-opening, based on the comparison with the 
band structure of the 1D homopolymer. For the pure substances of homopolymer 
A and B, the corresponding E - k dispersion should be as shown in fig. 2. When 
these two elements are mixed to form a binary ordered copolymer (OCP) A1Bx, 
what happens to the electronic structure? This system has a lattice vector twice that 
of each original pure substance. The band structure of the resulting binary OCP 
roughly corresponds to the half (folded into halves, i.e., 1/2) zone-folded band of 
the pure original substance. 

When the binary RCP system has the on-site energies of EA = --1 and EB = 1 
and also if the transfer energy between the element A and B is zero, an accidental 
degeneracy occurs between the antibonding state of the element A and the bonding 
state of the element B, i.e., the simple half zone-folding of the Brillouin zone (BZ). 
This transfer energy, however, is finite, because these two elements should mix to 
form a copolymer. Orbital mixing then occurs between the two accidentally degen- 
erated states, and they are split into the final bonding and antibonding state to 
cause a gap-opening. The gap-opening in the random system basically occurs by 
this orbital mixing. 

Figure 1 also shows the DOS energy profiles for the random alloy systems of 
other dimensions (2D and 3D). It is found that the RCP (1D) has the smallest gap- 
opening and this gap-opening increases with the increase in the spatial dimension. 
This characteristic can be understood by counting the neighboring site numbers. 
The RCP has two neighboring sites because of its one-dimensionality. The other 
dimensional random system has more site numbers, e.g., 4 or 6 sites for the 2D 
square or 3D cubic lattice, respectively. In the random system, the atomic arrange- 
ment is, however, not uniquely determined. Only the composition ratio is defined 
through ensemble-averaging. Therefore, the higher dimensional random system 
has a larger probability of placing the heterogeneous atoms at the neighboring 
sites. According to the gap-opening mechanism mentioned above, a larger gap 
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Fig. 2. Schematic energy band structure of  binary OCP. 
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should open when more heterogeneous atoms are positioned at the neighboring 
sites. Thus, the higher dimensional random system has the larger gap-opening. 

This feature is a characteristic of the random system. Within the Hiickel approx- 
imation, the gap-opening for the ordered system is equally conserved independent 
of the spatial dimension (band-gap limitation). This limitation originates from the 
spatial symmetry in the superlattice system. Table 1 summarizes the calculated 
band gaps for both random and ordered systems and the corresponding tail-states. 
The band-tail grows with decrease in the dimension. 

We explain this gap-limitation by considering the case of the 2D square binary 
ordered system. All the nearest neighboring sites in this 2D binary square lattice are 
occupied by heterogeneous atoms (simple superlattice). For a comparison with 
the results by the S-CPA method, the following are also assumed: The transfer ener- 
gies are limited between the nearest neighbor bonds (Hiickel approach). The 
values of the on-site energies and the transfer energies used in the band calculations 
are the same as those used in the CPA calculations and each atom has a spherical 
symmetric wave function. 

The band structure of this simple 2D superlattice is obtained from the following 
LCAO secular equations. 

- E 2 t c o s k x a / 2  2 t coskya /2  0 

2 t c o s k x a / 2  ~ - E 0 2 t coskya /2  

2 t coskya /2  0 ~ - E  2 tcosk~a /2  

0 2tcOskya/2  2 t c o s k x a / 2  a - E  

= 0. (17) 

Here, a and ~ are the on-site energies of the atoms A and B, respectively, and t is 
the transfer energy between them. 

The factor group of this 2D square binary superlattice is isomorphous with the 
point group D2d. The unit cell of this superlattice includes two atoms of each sub- 
stance A and B. Four states should, therefore, appear and those at point F are 
expressed in terms of the irreducible representations ofAg, B2u and B3u (fig. 3). The 
two Ag states correspond to the bonding state for the four s-like AOs and the anti- 
bonding state between them, respectively. 

The band gap of this system is determined by the highest occupied valence band 
(HOVB) state (B2u) and the lowest unoccupied conduction band (LUCB) state 
(B3u). Since the only atoms located diagonally in the unit cell give the net orbital 

Table 1 
Energy gaps of random (E~g din) and ordered (E~ rd) systems and tail-states (AE = (E~ ra - E~g~)/2). 
Values are in units of half-bandwidth. 

Dimensionality E~g d~ Eg ~d AE 

1D 0.38 2 0.81 
2D 0.58 2 0.71 
3D 0.72 2 0.64 
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Fig. 3. Band structure of  2D binary R C P  ordered square superlattice. On the right hand side, the orbi- 
tal characters at point  F are also shown. 

contribution to these band-edge states, orbital mixing does not occur between the 
nearest neighbor sites and the resulting band-edge states are left with localizing, 
i.e., band-gap limitation. 

Due to the structural symmetry, the same limitation in the gap-opening occurs 
in the other dimensional (1D and 3D) ordered systems. Thus, within the Hiickel 
approach, the gap-opening is independent of the spatial dimension. On the other 
hand, the random system has no structural symmetry, and has the possibility of 
placing the homogeneous atoms at the nearest neighbor site. These neighboring 
atoms cause the additional orbital mixings, which destabilize the HOVB state and 
stabilize the LUCB state and cause the tail-states. Thus, the gap-limitation dis- 
appears in the random system. 

Figure 4 shows the DOS energy profile of the binary RCP m0.6B0.4 (CA = 60%, 
CB = 40%). The DOS singularity of the element B completely disappears due to the 
site-substitutional randomness. Moreover, singularity-quenching occurs asymme- 
trically in the energy. A large amount of the quenching occurs in the energy of the 
A-B mixing region. This asymmetric quenching is weakened when the system's 
dimension is increased: In the 2D system, the asymmetric quenching is reduced 
more than that in the 1D system [13]. Since the 3D system inherently has no singu- 
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Fig. 4. DOS energy profiles for A0.6B0.4 binary RCP. On-site energies of elements A and B are 
EA = -1  and EB = 1 (energy unit is half-bandwidth). The results for 2D and 3D random systems are 

also shown. 

larity, the singularity-quenching does not occur. Therefore, the 3D system main- 
tains the symmetric energy profile even when the randomness is introduced. 

The present characteristics, e.g., the asymmetric quenching of the DOS singular- 
ity and the gap-opening of the RCP system etc. have been also reported by the 
other theoretical methods of the CBBT-NFC approach by Ladik's group [2,7] and 
the Green function approach by Del Re et al. [6,7]. Ladik et al. obtained the corre- 
sponding energy spectrum of the large but finite chains by the NFC method [2], 
and found the similar electronic characteristics for the virtual finite proteins includ- 
ing 20 glycine and serine amino-acid groups. They also found that these features 
are characterized more clearly with the increase of the polymerization. The limiting 
results for the infinite chains by Del Re et al. [7] well approach the present ones. 

Following Onodera and Toyozawa [14], we characterize the electronic structure 
of the RCP system by the value of the gap-opening: If gap > 0, the original charac- 
ters of each substance are not mixed, and the system becomes a persistence type. 
If gap = 0, the alloying annihilates the original characteristics of each substance, 
and an amalgamation type system appears. Figure 5 shows the boundary of the per- 
sistence and the amalgamation types of the binary RCP. Since the 1D RCP has 
the smallest gap-opening in every dimension, the 1D system tends to be the amalga- 
mation type, provided that the alloying content and the on-site energies are the 
same. 

3.2. MULTI-COMPONENT RCP SYSTEMS 

The DOS energy profile of the multi-component RCP can be also interpreted 
by the above BZ folding scheme. Figure 6 shows the DOS energy profile of the tern- 
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ary RCP (Ao.25Bo.25Co.25, on-site energies of EA = -- 1, EB = 0, Ec = 1 in units of 
half-bandwidth energy). If the binary RCP is formed by the elements A and C, the 
gap-opening should occur at E = 0. However, by adding element B to form the 
ternary RCP, the DOS of the element B exists finitely at E = 0, and compensates 
the gap-opening due to the mixing of the elements A and C. Therefore, the gap- 
opening disappears in the resulting DOS of Ao.25Bo.sCo.25. 
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Fig. 6. DOS energy profiles for Ao.25B0.sC0.25 ternary RCP and A0.25B0.25C0.25D0.25 quaternary RCP. 
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B and C are EA = --1, EB = 0 and Ec = 1 for ternary RCP and for 
elements A, B, C and D EA = --2, Ea = - 1 ,  Ec = 1 and ED = 2 for quaternary RCP (energy unit is 

half-bandwidth). 
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In one case the element number of the substances plays an essential role in the 
gap-opening. Figure 6 also shows the result for the quaternary RCP 
(Ao.25B0.25C0.25D0.25, EA = --2, EB = -- 1, Ec = 1, ED = 2). Significant resonance 
repulsion remains between elements B and C, and the actual gap-opening separates 
the resulting system into the apparent two systems of AB and CD amalgamation, 
although all substances are mixed equally. 

The unequal distribution of the DOS is also a characteristic of the 1 D multi-com- 
ponent RCP systems, because the quenching of the DOS singularity increases in 
the energy region (E N 0) where more resonance-repulsions occur but the total 
DOS should be conserved. Therefore, the resulting DOS tends to increase in both 
elements that have the lowest and highest on-site energies; i.e., the elements A and 
D of this case. This unequal distribution contrasts strongly with 3D random sys- 
tems, in which the DOS distribution is conserved equally if all substances are mixed 
equally. Thus, the RCP system consisting of an even number elements tends to pro- 
duce a gap-opening and become a persistence type. On the other hand, an amalga- 
mation type tends to be produced in the RCP system consisting of an odd number 
elements and the resulting DOS is maldistributed. 

3.3. APPLICATION TO Si-Ge RCP SYSTEM 

The following are the considerations for the Si-Ge RCP system. This system 
[15,16] is suitable for the application of the S-CPA method for the following rea- 
sons. 
• Si-Ge RCP has a site-substitutional randomness in the backbone. 
• The electrouic structures ofthe parent homopolymers, polysilane (PSi) and poly- 

germane (PGe), are quite resemble each other. Both have the directly allowed 
type band structure at point F. 

• The electronic states at the band-edges are well delocalized along the skeleton 
and the effective mass approximation is possible. 
We calculate the joint density-of-states (JDOS) for the Si-Ge RCP system, 

because the JDOS represents the electronic structure near the Fermi level and 
directly corresponds to the optical absorption spectrum. The JDOS of the parent 
homopolymer (i = PSi or PGe) can be expressed by the effective mass approxima- 
tion as follows: 

l 
1 (2m~"~ 1/2 1 

= (18) 
gim°S(E) 1 (2mi*' ~ 1/2 1 Eg + T  < . E ~ E g  + W . 

Here Eg is the band gap and m~ is the reduced effective mass defined as, 



334 K. Takeda / Electronic structure o f  random copolymers 

1 1 1 
m ;  .~ elec + mhOle " rft i 

The symbol W is the first JDOS band width of PSi and PGe. This value is nearly 
equal for PSi and PGe because of the similarity of their electronic structures. 

By transforming the energy E into c = E - Eg  - W / 2  in units of W / 2  energy, 
eq. (18) corresponds to eq. (10). The discussion in section 3.1 is therefore capable of 
the JDOS calculation for the Si-Ge RCP system. The band parameters of PSi and 
PGe used in the present work are determined by first principle band calculations 
[17]. 

Figure 7 shows the band-edge JDOS energy profile of Si0.9Ge0.1 RCP. Pure PSi 
causes the JDOS singularity at 3.9 eV and pure PGe causes it at 3.3 eV. These sin- 
gularities are quenched by the randomly distributed "impurity" Ge atom. Particu- 
larly in this case, the low Ge content strongly quenches the singularity due to 
PGe, as if annihilates it. Consequently, the vestige of PGe's singularity overlaps 
with PSi's JDOS and forms the tail-state. This tail-state grows toward the lower 
energy region with the increase of Ge content and changes to be a divergent form 
when the RCP includes the higher Ge content. At the same time, the singularity due 
to PSi, however, disappears so as to conserve the value of the total density. This 
band-edge JDOS energy profile is also important to discuss the fundamental opti- 
cal absorption edge of the Si-Ge RCP system, if the system has the weak energy 
dependence in the optical transition matrix elements. 

Figure 8 compares the band gap Eg of the SixGel-x RCP system with that of 
the SimGen OCP system [17]. The Eg values for the RCP system were obtained by 
the CPA calculation of JDOS, and the values for the OCP system were obtained by 
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the first principle band calculation for the SimGe, supercells [17]. In the SimGe, 
OCP system, the value of Eg depends on the length of Si catenation (or Ge catena- 
tion), even when the OCPs have the same composition ratio, e.g., the OCP mole- 
cules of SilGea and Si2Ge4 have the same Ge content (33%), but the theoretical Eg 
values have a difference about 1 eV. It should be, however, pointed out that the Eg 
values of these OCP molecules stand within those predicted by the virtual SiGe 
atom copolymer [18]. 

On the other hand, the Eg values of the RCP molecules shown in fig. 8 differ con- 
siderable from those of the virtual atom approximation. A significant decrease in 
Eg values is found, particularly, in the dilute Ge region. This strong bowing in the 
dependence of Eg on composition is a characteristic of the 1D RCP system, and is 
found in real SixGel-x RCP system. An 11% reduction in the Eg value is found 
when the Ge parts are copolymerized by 38% [15]. This value agrees well with the 
theoretical prediction of a 10.2% reduction (fig. 8). A similar strong reduction has 
been also observed in the other 1D RCP system, e.g. the Sel-xTex system [19,20]. 

This strong reduction in Eg is weakened with the increase in dimension, because 
this feature is caused by the largest tail-states due to asymmetric quenching of 
DOS singularity in the 1D random system. Figure 8 also shows the Eg composition 
dependence of the hypothetical 3D random Si-Ge system, whose pure substances 
are assumed to have the same Eg values as those of PSi and PGe but the 3D charac- 
ter is assumed in the DOS profile. The dependence of Eg on composition varies 
more gradually and uniformly, because the 3D random system has no asymmetric 
quenching. 
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A p p e n d i x  

By t ransforming the S-CPA condi t ion  (eq. (16)) into the polynomia l  fo rm by 
using F0 = F o ( E  - or), one can gain a clear insight into the appl icat ion to mult i -  
c o m p o n e n t  systems. The  result ing po lynomia l  forms of  binary, ternary and  
qua te rnary  alloy systems are given. 

• Binary alloy system 

aFo + b = 0 ,  

a =  - (EA - cr)(EB -- or), 

b --  C A E A  + CBEB - o'. (19) 

• Ternary  alloy system 

aF~ + bFo + c = O , 

a = (EA - cr)(EB - cr ) (Ec  - cr) , 

b=- [ (CA + C~)(eA--~)(E~ -~ )  + (C~ + Cc)(e~ - ~)(Ec -~ )  

+ (Cc + CA)(Ec- ~)(EA- o)], 

c = C A E A  + CBEB ÷ C c E c  - or. (20) 

• Qua te rna ry  alloy 

a F  3 + bF3  + cFo + d = O, 

a = --(EA -- cr)(EB -- ~r)(Ec - ~r)(ED -- or), 

b = (1 - CD)(EA -- cr)(Es -- a ) (Ec  - ~r) 

+ (1 - CA)(EB - cr)(EA -- cr)(gD -- or) 
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+ (1 -- C B ) ( E c  - o ' ) (ED - -  O ' ) ( E A  - -  O') 

+ (1 -- C c ) ( E D  - or) (EA -- cr)(EB -- or), 

= -- CA(EA -- cr)(EB -- or) -- CA(EA -- cr ) (Ec - or) - CA(EA -- or) (ED -- or) 

-- CB(EB - cr)(Ec - or) - CB(EB -- cr)(ED -- or) -- CB(EB -- f f ) (EA -- or) 

- C c ( S c  -  )(ED - - -  C c ( E c  - o ) ( E A  - -  - -  C c ( E c  - - 

-- CD(ED -- cr)(EA -- cr) -- CD(ED -- cr)(EB -- or) -- CD(ED -- c r ) (Ec  - or), 

d = C A E  A H- CBEB + C c E c  + CDED -- or. (21) 
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